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Abstract

This note reveals a characteristic of stable matchings in the college admissions prob-
lem and provides structural insights and a unified treatment for several results on entering
classes in this model, including the famous “Rural Hospital Theorem”. We also show
that the worst student determines the entire entering class. (JEL C78, D47)
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1 Introduction

The college admissions problem was introduced by Gale and Shapley (1962), and serves as
the cornerstone of many economic studies in school choice (see for example Abdulkadiroğlu
and Sönmez 2003).1 Colleges and students have preferences2 over each other; and each
college can admit students up to its quota while each student can be assigned to at most
one college. Stability has been the most commonly used solution concept in this model.
It is then important to understand the possible entering classes at stable matchings. Two
well-known results of such kind are the following: the Rural Hospital Theorem (Roth 1986)
states that any college with unfilled positions in one stable matching is matched to the same
set of students in all stable matchings. On the other hand, if a college has multiple entering
classes in different stable matchings then it can not be indifferent between different entering
classes.3 And in fact, it must prefer any student in the more preferred entering class to
anyone who is in the less preferred entering class, but not in the more preferred one (Roth
and Sotomayor 1989). The practical implication of Rural Hospital Theorem is that we can
not help unpopular colleges through a mere reselection among stable matchings, while the
second result dictates that certain entering classes can not coexist. The goal of this note, is
to provide a systematic approach for analyzing entering classes.

When studying the college admissions problem, we often think about another market in
which each seat of a college is matched to a single student, instead of each college matching
to a set of students. In this market, the preferences are significantly correlated: different
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1Sometimes with a slight modification that assumes colleges have priorities instead of preferences, i.e.
colleges are not strategic when analyzing incentive issues.

2Throughout this paper, we assume colleges have strict responsive preferences (Roth 1985).
3Here, only the strict preferences over individual students and responsiveness are assumed. Therefore

theoretically it is possible that a college is indifferent between two groups of students.
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seats of the same college share the same preference over students; and each student assigns a
similar rank for different seats of one college. Such correlations severely restrict the possible
changes to entering classes in two consecutive stable matchings:4 either an entering class
does not change, or one student who is worse than all the incumbents is substituted in. This
insight not only provides alternative proofs to previously mentioned results in a unified and
straightforward manner, but also leads to a few new results: First, the maximum difference of
two entering classes of any college provides a lower bound on the number of stable matchings.
Second, if two entering classes of one college in two stable matchings have the same least
preferred student, then these two entering classes must be exactly the same; in other words,
the worst student determines the entire entering class. We could further deduce that the
number of possible entering classes for each college is at most linear in the number of students.
This is perhaps surprising, as the number of potential entering classes without restrictions,
is large. If coupled with results in the large market literature, this bound can be improved
to sublinear for a large market. Third, if a student is admitted to a college in one stable
matching, and suppose he has a different match in the college optimal stable matching, then
there exists a stable matching such that he is the worst student in the entering class of that
college. This result guarantees the existence of certain entering classes, instead of placing
restrictions like the previous ones. These last two statements indicate that, the worst student
appears to play an interesting role in the theory of entering classes.

Since John Conway proved the lattice theorem in the one-to-one marriage model5 (see
Knuth 1976), many efforts have been made in studying stable matchings through lattice
theoretic approaches.6 Blair (1984) verifies the converse proposition: every finite distributive
lattice is a set of stable matchings. Therefore the lattice structure itself does not pose much of
a restriction on the set of stable matchings. Irving and Leather (1986) analyze the complexity
of counting stable matchings, with the help of “rotations”. Although the word “lattice” does
not appear in their paper, the major tools developed in their analysis, namely the rotations,
are closely related to the lattice structure of stable matchings. And this relationship is
characterized in Gusfield et al (1987), and Gusfield and Irving (1989), for the standard one-
to-one marriage model. In this note, we utilize their framework to analyze the entering
classes in a many-to-one college admissions model.

The term “rotation” may not sound familiar to some economics audiences. Informally,
it is a rejection chain that comes back to itself. In the man-proposing deferred-acceptance
algorithm (Gale and Shapley 1962), a woman can strategically reject some (acceptable) man
in the hope that this man will propose to someone else and cause another woman to reject her
current partner. Then this newly rejected man will propose again and this process repeats,
which forms a chain of rejections. If this rejection chain comes back to itself, i.e. in the end
the first woman receives a proposal from a man that she likes better than the one she rejects
in the beginning, then she benefits from her manipulation. The concept of rejection chain
is widely used in many arguments involving large markets (see for example Immorlica and

4More precisely, we are talking about changes among two stable matchings that are adjacent in the
Hasse diagram. (Hasse diagrams are defined under Example 2.1, see also https://en.wikipedia.org/

wiki/Hasse_diagram.)
5A special case of the college admissions model when each college has a quota of 1.
6A lattice structure presents in a variety of matching models, even when matchings are potentially un-

stable, see for instance Wu and Roth (2018), Kamada and Kojima (2018).
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Mahdian 2005, Kojima and Pathak 2009, and Ashlagi et al 2017). However, sometimes it is
hard to track the rejection process precisely: a man can propose to his next most preferred
woman and get rejected; then he proposes to his next choice and so on until he is accepted
by some woman, or the rejection chain ends. In a rotation, we modify men and women’s
preferences lists so that a man either only has his current partner on his list, or his next
most preferred choice is guaranteed to accept him if he is involved in a rejection chain. We
shall see the benefit of this modification in Section 2, and use rotations as building blocks
for our analysis in Section 3.

2 Model and Preliminaries

2.1 The College Admissions Model

There is a finite set of colleges C and a finite set of students S. Each student s has strict
preferences �s over the set of colleges and being unmatched, denoted by ∅. Each college c
has a quota qc and strict preferences �c over individual students.7 Furthermore its preference
over groups of students is responsive: for any S ′ ⊆ S, if |S ′| > qc then ∅ �c S

′; if |S ′| ≤ qc
then for any s1 ∈ S\S ′∪{∅}, s2 ∈ S ′: S ′ �c S

′∪{s1}\{s2} if and only if s2 �c s1. That is, a
college c considers a group of students S ′ as unacceptable if S ′ contains more students than
c’s capacity; and any two groups of students that differ in a single student are preference
ordered by that of individual students.

A matching µ specifies the entering class of each college; more formally, it is a mapping
such that: (1) ∀c ∈ C, µ(c) ⊆ S, |µ(c)| ≤ qc, and ∀s ∈ S, µ(s) ∈ C ∪ {∅}; (2) µ(s) = c⇔ s ∈
µ(c).8 We say a matching µ is individually rational if: (1) ∀s ∈ S, µ(s) %s ∅; (2) ∀c ∈ C,
s ∈ µ(c), we have s %c ∅; and a college-student pair (c, s) blocks µ if c �s µ(s) and at least
one of the following situations happen: (1) ∃s′ ∈ µ(c) such that s �c s

′; (2) |µ(c)| < qc and
s �c ∅. A matching µ is stable if and only if it is individually rational and there is no blocking
pair. In such a framework, Gale and Shapley (1962) and Roth (1985) show that a stable
matching always exists. Furthermore, the set of stable matchings forms a lattice under both
the order of common preferences of students, denoted by %S (µ %S µ

′ ⇔ µ(s) %s µ
′(s), ∀s ∈

S), and that of colleges, denoted by %C (µ %C µ′ ⇔ µ(c) %c µ
′(c), ∀c ∈ C), see Roth and

Sotomayor (1990). In fact these two lattices are duals. In other words, colleges and students
have opposite interest on stable assignments. In this note we focus on the lattice under the
order %C ; and the maximum and minimum elements of this lattice are called the college
optimal stable matching and student optimal stable matching respectively (denoted
by µC and µS).

In this model, one commonly used proof technique is to divide each college into multiple
copies, each having a quota of one, and make the market one-to-one. More precisely, for
each college ci with quota l, split it into l copies: ci1, ci2, ..., cil. Consider a new market (“the
related marriage market”), in which the agents are students and copies of colleges. Each

7As we mentioned in the beginning, Roth and Sotomayor (1989) show that, assuming strict preferences
over individuals and responsiveness, a college can not be indifferent between different entering classes at
stable matchings.

8We call µ(c) the entering class of c.
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college copy cij has the same preference over students as ci; and each student follows his
original preference when comparing two copies of different colleges ci and cj; and strictly
prefers cip over ciq if and only if p < q. Then there is a natural bijection between matchings
in the two markets: a matching µ in the many-to-one market, that matches college ci to
µ(ci) corresponds to a matching µ′ in the related marriage market where cij is matched to
ci’s j-th most preferred student among µ(c). It is well-known that µ is stable in the many-
to-one market if and only if µ′ is stable in the related marriage market; moreover, the lattice
structures of stable matchings in these two markets are isomorphic (Roth and Sotomayor
1990).9 In this note we use this isomorphism to study the properties of stable matchings in
the college admissions problem.

2.2 Rotations in a One-to-one Matching Market

We now introduce concepts and theorems on rotations in a standard one-to-one matching
model. They are not the focus of this note but serve as the building blocks. Therefore we
list them without proofs. Readers are referred to Gusfield and Irving (1989) for details. In
this subsection, we assume the quota qc = 1 for all colleges c ∈ C. For convenience (and by
convention), we call such a one-to-one matching model a stable marriage problem. As some
of the concepts introduced below are rather abstract, we work with the following example
for illustration purposes.

Example 2.1. Consider the following preference lists, taken from Gusfield et al (1987).

c1 c2 c3 c4 c5
s1 s2 s3 s4 s5
s3 s4 s1 s2 s1

s5

s1 s2 s3 s4 s5
c5 c4 c1 c2 c3
c3 c2 c3 c4 c5
c1

These preference lists should be read vertically, for example, c3’s preference is s3 �c3 s1 �c3

s5. Unlisted means unacceptable. One can verify that there are 6 stable matchings: (12345),
(14325), (32145), (34125), (32541), (34521). Here, we are using a simplified notation: the
number in the i-th position is the index of the student that is matched to ci; for instance,
(32145) means µ(c1) = s3, µ(c2) = s2, µ(c3) = s1, µ(c4) = s4 and µ(c5) = s5. The set of
stable matchings forms a lattice under %C .

In this lattice, a stable matching µ covers another stable matching µ′, if µ �C µ′ and
there is no stable matching ν such that µ �C ν �C µ′. (In other words, µ is the immediate
successor of µ′.) A Hasse diagram provides a visualization of this lattice (see Figure 1
below): the vertices of this diagram are the stable matchings, and there is a line segment that
goes upward from µ′ to µ whenever µ covers µ′. The ρ’s labeled on the edges are“rotations”
to be introduced in Definition 2.5.

Definition 2.2. A set of reduced preference lists is a set of preference lists induced
from the original ones of a given stable marriage problem with zero or more deletions that
satisfy: student s is absent from college c’s list if and only if c is absent from s’s list. With
respect to such a set of lists, we denote first(x), second(x), last(x) to be the first, second,
and last person in x’s reduced preference list.

9The isomorphism follows from Lemma 5.25 in Roth and Sotomayor (1990).
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Figure 1: Hasse Diagram for Example 2.1

For example, the original preference lists in Example 2.1 satisfy this definition. We could
do some deletions and obtain another reduced preference lists: c3 only lists s1 and s1 only lists
c3, and all other agents have empty lists. In the original lists, first(c3) = s3, second(c3) = s1,
and last(c3) = s5.

Definition 2.3. A set of reduced preference lists is called a stable set if for any college c
and student s, the following two conditions hold:
(1) s = first(c) if and only if c = last(s);
(2) s is absent from c’s list if and only if last(s) �s c.

One can check the original preference lists in Example 2.1 is a stable set.

Proposition 2.4. There is a bijection between the set of stable matchings and the stable
sets.

Given a stable set, consider matching each college c to first(c). It will be a stable
matching. Also, given a stable matching µ, for each student s, remove all the colleges ranked
below µ(s) from s’s original preference list, and remove s from c’s list if c is removed from
s’s list, then we get a stable set. This is our desired bijection. And whenever we talk about
stable sets and stable matchings interchangeably, we are referring to the bijection specified
above.

In Example 2.1, the original preference lists correspond to the stable matching (12345).
And from matching (32145), delete c1 from s1’s list, c3 from s3’s list, then delete s1 from c1’s
list, s3 from c3’s list, we obtain a stable set.

Definition 2.5. A sequence (c0, s0), (c1, s1), ..., (cr−1, sr−1), r ≥ 2 is called a rotation,
denoted by ρ, if with respect to some stable set ψ, si+1 = first(ci+1) = second(ci) for each i
(with cr = c0 and sr = s0). And we say ρ is exposed in ψ.

It is not hard to check that in Example 2.1, there are totally 3 rotations: ρ1 = (c1, s1),
(c3, s3), ρ2 = (c2, s2), (c4, s4) and ρ3 = (c3, s1), (c5, s5), with ρ1 exposed in (12345) and
(14325); ρ2 exposed in (12345), (32145) and (32541); ρ3 exposed in (32145) and (34125).
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We can think about rotations in terms of rejection chains. For instance, take the original
preference lists in Example 2.1, which correspond to the stable matching (12345). Now start
a rejection chain by forcing s1 to reject c1, then c1 proposes to its second choice s3; s3 then
rejects c3 in favor of c1, and finally c3 proposes to s1. We have completed the cycle (start
from s1 and back to s1) and obtained rotation ρ1.

More generally, suppose ρ = (c0, s0), (c1, s1), ..., (cr−1, sr−1) is a rotation exposed in ψ.
Then the stable matching corresponds to ψ matches c0 to s0, c1 to s1, ..., and cr−1 to sr−1.
Start a rejection chain by forcing student s0 to reject college c0, then c0 proposes to its next
most preferred student, which is second(c0) = s1. By the definition of rotation and stable
sets, it is always the case that s1 prefers c0 to c1.

10 Then s1 rejects c1, and c1 in turn proposes
to its next choice, which is s2, etc. This rejection process continues, until cr−1 is rejected by
sr−1 and proposes to s0. Finally s0 accepts this offer and a rejection cycle has formed.

Conversely, the typical way of finding a rotation is that, start a rejection chain with
respect to some stable set; if this rejection chain comes back to itself, then the cyclic part of
this rejection chain corresponds to a rotation.

Definition 2.6. If a rotation ρ is exposed in a stable set ψ, then we define an operation
called rotation elimination in the following way: for each college ci, we delete all colleges
ranked below ci from si+1’s list, and remove si+1 from those corresponding colleges’ lists.
Then we get a new set of reduced preference lists, call it τ .

An informal way of describing a rotation elimination is that we simply rematch each college
in the rotation to its current second choice and keep other colleges’ assignments unchanged
(with respect to the stable matching corresponding to ψ). Note that this operation is feasible,
as the reassignments only involve students in the rotation. The new matching, which is stable
by Proposition 2.7 below, corresponds to the stable set τ . In Example 2.1, if we eliminate
ρ1 = (c1, s1), (c3, s3) from (12345), we just rematch c1 to s3 and c3 to s1, which gives us
another (stable) matching (32145). In Figure 1, this is characterized by the top right edge
between (12345) and (32145), labeled by ρ1.

Proposition 2.7. τ is also a stable set.

In terms of stable matchings, if ρ is exposed in a stable matching µ, then eliminating this
rotation leads to another stable matching µ′. Notice the assignment for each college involved
in ρ changes from its first choice to second choice, therefore µ �C µ

′.

Proposition 2.8. For any stable matching µ, it can be obtained by eliminating a sequence
of rotations from µC, the college optimal stable matching.

In Example 2.1, (34125) can be obtained from (12345) by eliminating ρ1 then ρ2 (or first
ρ2 then ρ1). This proposition allows us to compare an arbitrary stable matching with µC

through rotations.

Proposition 2.9.
(I). Suppose two stable matchings µ covers µ′, then there is a unique rotation ρ such that

µ′ can be obtained by eliminating ρ from µ.

10We know s1 = first(c1) ⇒ c1 = last(s1) ⇒ c0 �s1 c1, as c0 is on s1’s list, which is implied by
s1 = second(c0) is on c0’s list.
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(II). In the Hasse diagram, if we attach such ρ on the edge between µ and µ′ for each such
pair, then in any maximal chain between µC and µS, each rotation shows up exactly once.

(III). For each college c, we can find all of its possible entering classes (or partners,
following the tradition of marriage markets) at stable matchings in any maximal chain of the
lattice.

Let’s demonstrate this proposition with Figure 1. Suppose a stable matching µ, say
(14325) covers another stable matching µ′, say (34125), then there is an edge between µ and
µ′ in the Hasse diagram. Statement (I) tells us that µ′ can be obtained from µ by eliminating
a unique rotation (ρ1 in this case). Therefore, we can label each edge in the Hasse diagram
with a unique rotation.

There are three maximal chains from (12345) to (34521), corresponding to the paths
ρ2 − ρ1 − ρ3, ρ1 − ρ2 − ρ3 and ρ1 − ρ3 − ρ2.11 As statement (II) claims, each rotation shows
up exactly once in each of the maximal chains.

In Example 2.1, c3’s potential partners at stable matchings are s3, s1, and s5. Notice
µC(c3) = s3, µS(c3) = s5, and any maximal chain between µC and µS must contain either
(32145) or (34125), in which c3 and s1 are matched.

Statement (I) of Proposition 2.9 characterizes rotations as the difference between stable
matchings. It also implies that for any two stable matchings µ �C µ

′, µ′ can be obtained by
eliminating a sequence of rotations from µ (a generalization of Proposition 2.8). Statement
(III) then allows us to study two arbitrary potential partners of any college through rotations,
as we can always find them in two matchings along one maximal chain. (See Lemma 3.5 for
a formal statement.)

3 Rotations and Entering Classes

Now we are ready to analyze the many-to-one model, using the splitting college trick in-
troduced in Section 2.1. More precisely, given an instance of the college admissions problem,
we investigate its rotation structure in the related marriage market, and then use the isomor-
phism between the lattices of stable matchings (under the common preferences of colleges)
in the two markets to prove results in the original college admissions model. Due to the way
we construct agents’ preferences in the related marriage market, its stable sets also have a
special structure:

Theorem 3.1. Suppose a college ci has a quota of l, then in any stable set, the reduced
preference lists for ci1, ci2, ..., cil have the following structure:
Suppose the reduced preference list of ci1 in this stable set is s1, s2, s3, ..., sk, in a decreasing
order. Then the reduced preference list of ci2 is exactly s2, s3, ..., sk; the reduced preference
list of ci3 is s3, s4, ..., sk; etc. Depending on k and l, the reduced preference lists of ci look
like one of the following triangular arrays:
(the top one is when k ≥ l, and the bottom one is when k < l).

11Formally a maximal chain is a chain of matchings, e.g. (12345)− (14325)− (34125)− (34521). By abuse
of notation, we also call the path of eliminated rotations along this chain, e.g. ρ2−ρ1−ρ3, a maximal chain.
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ci1 ci2 ci3 ... cil
s1 s2 s3 ... sl
s2 s3 s4 ... sl+1

s3 s4 s5 ... ...
... ... ... ... sk
sk−2 sk−1 sk
sk−1 sk
sk

ci1 ci2 ci3 ... cik−1 cik cik+1 ... cil
s1 s2 s3 ... sk−1 sk
s2 s3 s4 ... sk
s3 s4 s5 ...
... ... ... ...
sk−2 sk−1 sk
sk−1 sk
sk

Proof. We show that for any s that is not in ci1’s reduced preference list, it is not in ci2’s
reduced preference list either. And for any s other than s1 that is in ci1’s reduced preference
list, it is also in ci2’s reduced preference list. Therefore ci2’s list is exactly s2, s3, ..., sk.
Repeating this argument, each copy of ci must have exactly the reduced preference list
stated in Theorem 3.1.

If s is not in ci1’s reduced preference list, then by Definition 2.3, last(s) �s ci1. By
definition we also have ci1 �s ci2, then by transitivity, last(s) �s ci2, therefore s is also
absent from ci2’s reduced preference list;

If s = s1, then last(s1) = ci1 �s1 ci2, therefore it is not in the reduced preference list of
ci2;

If s is in ci1’s reduced preference list, and s 6= s1, then again by Definition 2.3, ci1 �s

last(s) (can’t be equal since ci1 = last(s1)). Notice in s’s original preference list, ci2 is right
below ci1, then ci2 %s last(s), this implies s is in the reduced preference list of ci2.

The key insights of Theorem 3.1, can be summarized in the following two lemmas (with
the same notations as in Theorem 3.1).

Lemma 3.2. If k < l, i.e. if ci does not fill its quota, then there is no rotation that involves
any position (copy) of ci.

Proof. Suppose otherwise, say cij is the first ci1, ci2, ..., cil that is in the rotation. By Defini-
tion 2.5, this rotation must contain (cij, sj), (cij+1, sj+1), ..., (cik, sk). It can not continue from
here to form a cycle, since cik only has sk in its reduced preference list, contradiction.

This provides the intuition for our alternative proof of the Rural Hospital Theorem (The-
orem 3.6): If ci does not fill its quota, then no rotation involves ci, therefore the entering
class of ci can not change.
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Lemma 3.3. Suppose k ≥ l, i.e. ci does fill its quota. Let ρ be any rotation that is exposed
in the stable set and involves some position (copy) of ci. Then eliminating ρ replaces student
sj by sl+1 for some j, and all other students matched to ci are unchanged. (Notice sl+1 is
less preferred than any incumbent.)

That is, eliminating a rotation always swaps one incumbent with a student who is worse
than all incumbents for each college involved in it.

Proof. Let µ be the stable matching corresponding to the original stable set, and µ′ be the
stable matching obtained by eliminating ρ from µ. Also, let cij be the first ci1, ci2, ..., cil that
is in ρ, then ρ must contain (cij, sj), (cij+1, sj+1), ..., (cil, sl). This means, in µ′, ci is matched
with s1, s2, ..., sj−1, sj+1, sj+2, ..., sl, sl+1; comparing to µ(ci), only sj is replaced by sl+1.

There are two points in this result: First, the new student is worse than the incum-
bents, which allows us to study college’s preference over students across entering classes
(Theorem 3.9 and Theorem 3.10). Second, the size of change is only one, which not only
has implications on the difference between entering classes (Theorem 3.7) but also permits
results with a flavor of the discrete intermediate value theorem (Theorem 3.13).

The next two lemmas, are direct consequences of the results in the one-to-one marriage
model.

Lemma 3.4. A rotation elimination changes the entering class of ci if and only if ρ involves
some position (copy) of ci; similarly the college that a student s is admitted to changes if
and only if s is involved in ρ.

Proof. This follows directly from Definition 2.6.

Lemma 3.5. For any two entering classes (at stable matchings) µ(ci) �ci µ
′(ci), there exist

two stable matchings ν and ν ′ such that µ(ci) = ν(ci), µ′(ci) = ν ′(ci), and ν ′ can be obtained
by eliminating a sequence of rotations from ν.

Proof. By Proposition 2.9 (III), each maximal chain between µC and µS contains all possible
entering classes for any college ci. Say in one maximal chain, we have matchings ν and
ν ′ such that µ(ci) = ν(ci) and µ′(ci) = ν ′(ci). Then ν ′ can be obtained by eliminating a
sequence of rotations from ν (along the rotation path of this chain).

So even though µ and µ′ may not be comparable under %C , if we only care about the
entering classes of a particular college ci in µ and µ′, we can always find two comparable
matchings ν and ν ′ with the same entering classes as µ and µ′ respectively (for ci). This
lemma allows us to compare two arbitrary entering classes through rotations.

The results we prove below follow straightforwardly from the above four lemmas.

Theorem 3.6. (The Rural Hospital Theorem, Roth 1986): If a college does not fill
its quota in a stable matching, then it is matched to the same set of students in any stable
matching.
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Proof. Suppose some college c does not fill its quota in some stable matching µ. By Propo-
sition 2.8, it can be obtained by eliminating a sequence of rotations from the college optimal
stable matching. Note that, if a college c fills its quota in a stable matching ν, then elimi-
nating any rotation exposed in ν will not create unfilled positions in c; since eliminating a
rotation will not make any copy of c change from matched to unmatched. Then we know c
does not fill its quota in the college optimal stable matching. Since any other stable match-
ing can be obtained by eliminating a sequence of rotations from the college optimal stable
matching, then by Lemma 3.2, all these rotations do not involve c, which means the students
matched to c are the same in any stable matchings, by Lemma 3.4.12

Theorem 3.7. (One at a time): If two stable matchings, µ covers µ′, then for any college
c, µ(c) and µ′(c) differ by at most one student.

Proof. By Proposition 2.9 (I), µ′ can be obtained by eliminating a rotation ρ from µ. Two
cases: (1). if ρ does not involve any copy of c, then by Lemma 3.4, µ(c) = µ′(c); (2). if ρ
involves some copy of c, then by Lemma 3.3, eliminating ρ replaces sj by sl+1. Therefore no
matter what, the difference is at most one student.

Rotations are sometimes considered as the “minimal” difference between stable matchings,
as it identifies the difference between two matchings in a covering relation. Theorem 3.7
reveals that the minimal difference between entering classes (of the same college) is small in
a college admissions model.

Remark 3.8. Theorem 3.7 implies the following: if in two stable matchings µ and µ′, the
entering classes of a college c, i.e. µ(c) and µ′(c), differ by x students, then there are at least
x+ 1 stable matchings in this college admissions problem.

Theorem 3.9. (Extreme favoritism, Roth and Sotomayor 1989): For two stable
matchings µ, µ′ and a college c, if µ(c) �c µ

′(c), then s �c s
′ for all s ∈ µ(c) and s′ ∈

µ′(c)− µ(c).

If a college prefers one entering class to another, then it prefers any student in the better
entering class to anyone in the worse entering class, but not in the better one.

Proof. By Lemma 3.5, we can find ν and ν ′ such that µ(c) = ν(c), µ′(c) = ν ′(c), and ν ′ can be
obtained by eliminating a sequence of rotations from ν. By Lemma 3.4, the students matched
to c is unchanged when eliminating a rotation that does not involve c. By Lemma 3.3 if a
rotation involves some copies of c, then it will replace student sj with sl+1, with sl+1 being
worse than all the incumbents. So all the students added in by rotations are worse than the
original students in ν(c), therefore Theorem 3.9 holds.

Theorem 3.10. (The mascot): For two stable matchings µ, µ′ and a college c, suppose
the least preferred student (under �c) in µ(c) is the same as that of µ′(c), then µ(c) = µ′(c).

12Alternatively, we can prove it through Lemma 3.5. Suppose we want to compare µ(c) and µ′(c) with c
not filling its quota in one of the matchings. Without loss, we can assume µ′ can be obtained from µ through
a sequence of rotations (otherwise apply Lemma 3.5). Since eliminating a sequence of rotations does not
create new empty positions, it has to be the case that |µ(c)| < qc, then by Lemma 3.2 all these rotations do
not involve c, and µ(c) = µ′(c).
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So, if an entering class needs a representative, the worst student would be the best can-
didate.

Proof. It follows from the fact that each rotation elimination involving c will replace the
current least preferred student with a worse one (after sl+1 joins, sl is no longer the worst).
It also follows from Theorem 3.9: suppose otherwise, without loss, say µ(c) �c µ

′(c).13 Let s
be the common least preferred student, and s′ ∈ µ′(c)−µ(c) (by the Rural Hospital Theorem,
Theorem 3.6, it can’t be the case that µ′(c) ⊂ µ(c)). Then Theorem 3.9 implies s �c s

′,
which contradicts the fact that s is the least preferred student in µ′(c).

Corollary 3.11. (Not so many): The number of entering classes for any college c at stable
matchings is at most max{|S| − qc + 1, 1}.

Proof. If c does not fill its quota in any stable matching, then by the Rural Hospital Theorem,
Theorem 3.6, it has a unique entering class. Otherwise, by Theorem 3.10, each entering class
is uniquely determined by the worst student. And the number of students who can potentially
be the worst student in an entering class is |S|−qc+1. (Without any restriction, the number
of possible entering classes is

(|S|
qc

)
, which is at the order of |S|qc .)

The same logic can be applied to a large market setting. Kojima and Pathak (2009) show
that, with short preferences lists for colleges, as the number of colleges n grows to infinity,
the expected number of colleges with different entering classes is sublinear in n. Therefore
the total number of students with different assignments is also sublinear in n (they assume
the quotas of colleges are bounded by a constant). In other words, the total number of
students who can potentially become the worst student in any college’s entering classes is
sublinear in n. Therefore, for a college with multiple assignments, its number of entering
classes is sublinear in n. (In comparison, Corollary 3.11 only implies the number of entering
classes is at most linear in n.)14

Remark 3.12. One can prove a slightly stronger version of Theorem 3.10 almost verbatim:
If the i-th most preferred student in µ(c) and µ′(c) is the same, then the first i most preferred
students in µ(c) and µ′(c) must agree.15

Theorem 3.13. (Don’t get cocky): Let µ be a stable matching. Suppose s ∈ µ(c), and
s /∈ µC(c), then there is a stable matching µ′ such that s ∈ µ′(c) and s is the least preferred
student in µ′(c).

So if you are matched to a college, but not among the very best candidates of this college,
there is an entering class in which you are the most suitable representative of your cohort.

13By footnote 7, c can not be indifferent.
14In Kojima and Pathak (2009), with an additional assumption that the market is sufficiently thick, i.e.

“the expected number of colleges that are desirable enough, yet have fewer potential applicants than seats,
grows fast enough as the market becomes large”, they show that all colleges have a unique entering class
with high probability. Here, we do not need this assumption, but the result is also weaker.

15I do not want to overclaim what is new. As Alvin Roth, one of the authors in Roth and Sotomayor
(1989) commented, they were aware of some related results when writing their paper. However, I have not
found prior literature emphasizing the importance of the least preferred student, and what’s special about
the worst student seems likely to be of independent interest. (e.g. see Theorem 3.13.)
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Proof. By Proposition 2.8, µ can be obtained by eliminating a sequence of rotations from
µC . Since s /∈ µC(c) and s ∈ µ(c), there must exist a rotation ρ involving s such that after
its elimination, s is matched to c. Let the first matching after eliminating ρ be µ′, then by
Lemma 3.3, s must be the least preferred student of c among µ′(c).

Remark 3.14. Again one can prove a slightly stronger result almost verbatim: if s is the
i-th least preferred student in µ(c), then for each 1 ≤ j ≤ i, there is a stable matching µ′

such that s is the j-th least preferred student in µ′(c).

The intuition for Theorem 3.13 and Remark 3.14 is that, as each time when the entering
class changes, only one new student is substituted in and becomes the new worst student in
the cohort, there has to be a time that s just joined c, and s could only climb up his rank
in c one at a time.

4 Conclusion

Rotations are useful in the stable marriage problem: the algorithms for finding the set
of all stable matchings are developed from them (Gusfield and Irving 1989). In this note,
we show that they also have interesting implications in the college admissions problem.
Many results about entering classes, including the Rural Hospital Theorem, can be derived
straightforwardly from them. In fact, some new results such as Theorem 3.7 and Theo-
rem 3.13 appear difficult to be proven through standard arguments. And just as a chain is
only as strong as the weakest link, the quality of a cohort is determined by its worst student.
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